

Turbo Codes for PCS Applications

D. Divsalar and F. Pollara1

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Abstract: Turbo codes are the most exciting and potentially important
development in coding theory in many years. They were introduced in
1993 by Berrou, Glavieux and Thitimajshima [1], and claimed to achieve
near Shannon-limit error correction performance with relatively simple
component codes and large interleavers. A requiredEb/No of 0.7 dB was
reported for BER of 10−5 and code rate of 1/2 [1]. However, some im-
portant details that are necessary to reproduce these results were omitted.
This paper confirms the accuracy of these claims, and presents a complete
description of an encoder/decoder pair that could be suitable for PCS ap-
plications. We describe a new simple method for trellis termination, we
analyze the effect of interleaver choice on the weight distribution of the
code, and we introduce the use of unequal rate component codes which
yields better performance. Turbo codes are extended to encoders with
multiple codes and a suitable decoder structure is developed, which is
substantially different from the decoder for two-code based encoders.

I. Introduction

Coding theorists have traditionally attacked the problem of designing
good codes by developing codes with a lot of structure which lends to
feasible decoders, although coding theory suggests that codes chosen “at
random” should perform well if their block size is large enough. The
challenge to find practical decoders for “almost” random, large codes has
not been seriously considered until recently. Perhaps the most exciting
and potentially important development in coding theory in recent years
has been the dramatic announcement of “Turbo-codes” by Berrou et al.
in 1993 [1]. The announced performance of these codes was so good that
the initial reaction of the coding establishment was deep skepticism, but
recently researchers around the world have been able to reproduce those
results [3]- [4]. The introduction of turbo-codes has opened a whole new
way of looking at the problem of constructing good codes and decoding
them with low complexity.

These codes are claimed to achieve near Shannon-limit error correc-
tion performance with relatively simple component codes and large inter-
leavers. A requiredEb/N0 of 0.7 dB was reported for BER of 10−5 [1].
However, some important details that are necessary to reproduce these
results were omitted. The purpose of this paper is to shed some light on
the accuracy of these claims, and to present a complete description of an
encoder/decoder pair that could be suitable for personal communications
systems (PCS) applications, where lower rate codes can be used.

For example, in multiple-access schemes like CDMA the capacity
(maximum number of users per cell) can be expressed asC = η

Eb/No
+ 1,

whereη is the processing gain andEb/No is the required signal-to-noise
ratio to achieve a desired bit error rate (BER) performance. For a given
BER, a smaller requiredEb/No implies a larger capacity or cell size.
Unfortunately, to reduceEb/No it is necessary to use very complex codes
(e.g. large constraint length convolutional codes). In this paper, we design
turbo codes suitable for CDMA and PCS applications that can achieve
superior performance with limited complexity. For example, if a (7,1/2)
convolutional code is used at BER=10−3, the capacity isC = 0.5η.
However, if two (5,1/3) punctured convolutional codes or three (4,1/3)
punctured codes are used in a turbo encoder structure, the capacity can
be increased toC = 0.8η (with 192-bits and 256-bits interleavers which

1The research described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.

correspond to 9.6 Kbps and 13 Kbps with roughly 20ms frames). Higher
capacity can be obtained with larger interleavers. Note that low rate codes
can be used for CDMA since an integer number of chips per coded symbol
is used and bandwidth is defined mainly by chip rate.

Three new contributions are reported in this paper: a new simple
method for trellis termination, the use of unequal rate component codes
which results in better performance, and the development of decoders for
multiple-code encoders — the original turbo decoder scheme operates in
serial mode, while for multiple-code encoders we found that the decoder
for the whole turbo code based on the optimum MAP rule must operate
in parallel mode, and we derived the appropriate metric as illustrated in
Sec. III.

II. Parallel Concatenation of Convolutional

Codes

The codes considered in this paper consist of the parallel concatenation
of multiple convolutional codes with random interleavers (permutations)
at the input of each encoder. Fig. 1 illustrates a particular example that
will be used in this paper to verify the performance of these codes. The

u
• x1i

x1p

x2p

x3p

π2

D D• ••

Encoder 1

D D• •

Encoder 2

D D• •

Encoder 3

•

•

•

•

u3

u2

π3

Figure 1: Example of encoder with three codes

encoder contains three recursive binary convolutional encoders, withM1,
M2 andM3 memory cells respectively. In general, the three component
encoders may not be identical. The first component encoder operates
directly on the information bit sequenceu = (u1, . . . , uN) of lengthN,
producing the two output sequencesx1i andx1p. The second component
encoder operates on a reordered sequence of information bitsu2 produced
by an interleaverπ2 of lengthN, and outputs the sequencex2p. Similarly,
subsequent component encoders operate on a reordered sequence of in-
formation bitsu j produced by interleaverπ j and output the sequencex j p.
The interleaver is a pseudo-random block scrambler defined by a permu-
tation of N elements with no repetitions: a complete block is read into
the the interleaver and read out in a specified (fixed) random order. The
same interleaver is used repeatedly for all subsequent blocks. Figure 1
shows an example where a rater = 1/n = 1/4 code is generated by three

component codes withM1 = M2 = M3 = M = 2, producing the outputs
x1i = u, x1p = u · gb/ga, x2p = u2 · gb/ga, andx3p = u3 · gb/ga, where
the generator polynomialsga andgb have octal representation(7)octal and
(5)octal, respectively. Note that various code rates can be obtained by
proper puncturing ofx1p, x2p andx3p. The design of the constituent
convolutional codes, which are not necessarily optimum convolutional
codes, is still under investigation. It was suggested in [5] that good codes
are obtained ifga is a primitive polynomial.
Trellis Termination — We use the encoder in Fig. 1 to generate a
(n(N + M), N) block code, where theM tail bits of code 2 and code 3
are not transmitted. Since the component encoders are recursive, it is not
sufficient to set the lastM information bits to zero in order to drive the
encoder to the all zero state, i.e. to terminate the trellis. The termination
(tail) sequence depends on the state of each component encoder afterN
bits, which makes it impossible to terminate both component encoders
with just M bits. This issue has not been resolved in previously proposed
turbo code implementations. Fortunately, the simple stratagem illustrated
in Fig. 2 is sufficient to terminate the trellis at the end of the block. (The
specific code shown is not important). Here the switch is in position “A”
for the firstN clock cycles and is in position “B” forM additional cycles,
which will flush the encoders with zeros. The decoder does not assume
knowledge of theM tail bits. The same termination method will be used
for all encoders.

D D D D
Input Data •

• •• • ••
xp

•
A

B

xi

Figure 2: Trellis Termination

Weight Distribution — In order to estimate the performance of
a code it is necessary to have information about its minimum distance,
weight distribution, or actual code geometry, depending on the accuracy
required for the bounds or approximations. The challenge is in finding
the pairing of codewords from each individual encoder, induced by a
particular set of interleavers. Intuitively, we would like to avoid joining
low-weight codewords from one encoder with low-weight words from
the other encoders. In the example of Fig. 1, the component codes have
minimum distances 5,2 and 2. This will produce a worst-case minimum
distance of 9 for the overall code. Note that this would be unavoid-
able if the encoders were not recursive since, in this case, the minimum
weight word for all three encoders is generated by the input sequence
u = (00. . . 0000100. . . 000) with a single “1”, which will appear again
in the other encoders, for any choice of interleavers. This motivates the
use of recursive encoders, where the key ingredient is the recursiveness
and not the fact that the encoders are systematic. For our example, the
input sequenceu = (00. . . 00100100. . . 000) generates a low weight
codeword with weight 6, for the first encoder. If the interleavers do not
“break” this input pattern, the resulting codewords weight will be 14. In
general weight-2 sequences with 2+ 3t zeros separating the 1’s would
result in a total weight of 14+ 6t if there were no permutations.

With permutations before the second and third encoders, a weight-
2 sequence with its 1’s separated by 2+ 3t1 zeros will be permuted
into two other weight-2 sequences with 1’s separated by 2+ 3ti zeros,
i = 2, 3, where eachti is defined as a multiple of 1/3. If any ti is not
an integer, the corresponding encoded output will have a high weight
because then the convolutional code output is non-terminating (until the
end of the block). If allti ’s are integers, the total encoded weight will be

14+2
∑3

i =1 ti . Thus, one of the considerations in designing the interleaver
is to avoid integer triplets(t1, t2, t3) that are simultaneously small in all
three components. In fact, it would be nice to design an interleaver to
guarantee that the smallest value of

∑3
i =1 ti (for integerti) grows with the

block sizeN.

For comparison we consider the same encoder structure in Fig. 1, ex-
cept with the roles ofga andgb reversed. Now the minimum distances
of the three component codes are 5, 3, and 3, producing an overall min-
imum distance of 11 for the total code without any permutations. This
is apparently a better code, but it turns out to be inferior as a turbo code.
This paradox is explained by again considering the critical weight-2 data
sequences. For this code, weight-2 sequences with 1+ 2t1 zeros sepa-
rating the two 1’s produce self-terminating output and hence low-weight
encoded words. In the turbo encoder, such sequences will be permuted
to have separations 1+ 2ti , i = 2, 3, for the second and third encoders,
where now eachti is defined as a multiple of 1/2. But now the total
encoded weight for integer triplets(t1, t2, t3) is 11+∑3

i =1 ti . Notice how

this weight grows only half as fast with
∑3

i =1 ti as the previously calcu-

lated weight for the original code. If
∑3

i =1 ti can be made to grow with
block size by proper choice of interleaver, then clearly it is important to
choose component codes that cause the overall weight to grow as fast as
possible with the individual separationsti . This consideration outweighs
the criterion of selecting component codes that would produce the highest
minimum distance if unpermuted.

There are also many weight-n, n = 3, 4, 5, ..., data sequences that
produce self-terminating output and hence low encoded weight. However,
as argued below, these sequences are much more likely to be broken up
by the random interleavers than the weight-2 sequences and are therefore
likely to produce non-terminating output from at least one of the encoders.
Thus, turbo code structures, which would have low minimum distances
if unpermuted, can still perform well if the low-weight codewords of the
component codes are produced by input sequences with weight higher
than two.

Weight Distribution with Random Interleavers — Now
we briefly examine the issue of whether one or more random interleavers
can avoid matching small separations between the 1’s of a weight-2 data
sequence with equally small separations between the 1’s of its permuted
version(s). Consider for example a particular weight-2 data sequence
(. . . 001001000. . .) which corresponds to a low weight codeword in each
of the encoders of Fig. 1. If we randomly select an interleaver of size
N, the probability that this sequence will be permuted into another se-
quence of the same form is roughly 2/N (assuming thatN is large,
and ignoring minor edge effects). The probability that such an unfor-
tunate pairing happens for at least one possible position of the original
sequence(. . . 001001000. . .) within the block size ofN, is approxi-
mately 1− (1 − 2/N)N ≈ 1 − e−2. This implies that the minimum
distance of a two-code turbo code constructed with a random permuta-
tion is not likely to be much higher than the encoded weight of such
an unpermuted weight-2 data sequence, e.g. 14 for the code in Fig. 1.
(For the worst case permutations, thedmin of the code is still 9, but these
permutations are highly unlikely if chosen randomly). By contrast, if
we use three codes and two different interleavers, the probability that
a particular sequence(. . . 001001000. . .) will be reproduced by both
interleavers is only(2/N)2. Now the probability of finding such an un-
fortunate data sequence somewhere within the block of sizeN is roughly

1 − [
1 − (2/N)2

]N ≈ 4/N. Thus it is probable that a three-code turbo
code using two random interleavers will see an increase in its minimum
distance beyond the encoded weight of an unpermuted weight-2 data
sequence. This argument can be extended to account for other weight-
2 data sequences which may also produce low weight codewords, e.g.
(. . . 00100(000)t1000. . .), for the code in Fig. 1. For comparison, let

us consider a weight-3 data sequence such as(. . . 0011100. . .) which
for our example corresponds to the minimum distance of the code (using
no permutations). The probability that this sequence is reproduced with
one random interleaver is roughly 6/N2, and the probability that some
sequence of the form(. . . 0011100. . .) is paired with another of the same
form is 1− (1 − 6/N2)N ≈ 6/N. Thus for large block sizes, the bad
weight-3 data sequences have a small probability of being matched with
bad weight-3 permuted data sequences, even in a two-code system.

For a turbo code usingq codes andq − 1 random interleavers this

probability is even smaller, 1− [
1 − (6/N2)q−1

]N ≈ 6
N (6

N2)q−2. This
implies that the minimum distance codeword of the turbo code in Fig. 1
is more likely to result from a weight-2 data sequence of the form
(. . . 001001000. . .) than from the weight-3 sequence(. . . 0011100. . .)
that produces the minimum distance in the unpermuted version of the
same code. Higher weight sequences have even smaller probability of
reproducing themselves after being passed through a random interleaver.

For a turbo code usingq codes andq − 1 interleavers, the probability
that a weight-n data sequence will be reproduced somewhere within the

block by allq − 1 permutations is of the form 1− [
1 − (β/Nn−1)q−1

]N
,

whereβ is a number that depends on the weight-n data sequence but does
not increase with block sizeN. For largeN, this probability is propor-
tional to(1/N)nq−n−q, which falls off rapidly withN, whenn andq are
greater than two. Furthermore, the symmetry of this expression indicates
that increasing either the weight of the data sequencen or the number of
codesq has roughly the same effect on lowering this probability.

In summary, from the above arguments we conclude that weight-2 data
sequences are an important factor in the design of the component codes,
and that higher weight have decreasing importance. Also, increasing the
number of codes may result in better turbo codes. More accurate results
and derivations are discussed in [6].

The minimum distance is not the most important quantity of the turbo
code, except for its asymptotic performance, at very highEb/No. At mod-
erate SNRs, the weight distribution for the first several possible weights
is necessary to compute the code performance. Estimating the complete
weight distribution of these codes for largeN and fixed interleavers is still
an open problem. However, it is possible to estimate the weight distribu-
tion for largeN for random interleavers by using probabilistic arguments.
(See [4] for further considerations on the weight distribution).

Interleaver Design — Interleavers should be capable of spread-
ing low-weight input sequences so that the resulting codeword has high
weight. Block interleavers, defined by a matrix withνr rows andνc

columns such thatN = νr ×νc, may fail to spread certain sequences. For
example, the weight 4 sequence shown in Fig. 3 cannot be broken by a
block interleaver. In order to break such sequences random interleavers
are desirable. (A method for the design of interleavers is discussed in [3]).
Block interleavers are effective if the low-weight sequence is confined to
a row. If low-weight sequences (which can be regarded as the combina-
tion of lower weight sequences) are confined to several consecutive rows,
then theνc columns of the interleaver should be sent in a specified order
to spread as much as possible the low-weight sequence. A method for
reordering the columns is given in [8]. This method guarantees that for
any number of columnsνc = aq + r , (r ≤ a − 1), the minimum sepa-
ration between data entries isq − 1, wherea is the number of columns
affected by a burst. However, as can be observed in the example in Fig. 3,
the sequence 1001 will still appear at the input of the encoders for any
possible column permutation. Only if we permute the rows of the inter-
leaver in addition to its columns it is possible to break the low-weight
sequences. The method in [8] can be used again for the permutation of
rows. Appropriate selection of ofa, andq for rows and columns de-
pends on the particular set of codes used and on the specific low-weight
sequences that we would like to break. We have also designed random

permutations (interleavers) by generating random integersi , 1 ≤ i ≤ N,
without replacement. We define a “S-random” permutation as follows:
each randomly selected integer is compared toSpreviously selected inte-
gers. If the current selection is equal to anySprevious selections within
a distance of±S, then the current selection is rejected. This process is
repeated until allN integers are selected. While the searching time in-
creases withS, we observed that choosingS <

√
N/2 usually produces

a solution in reasonable time. (ForS = 1 we have a purely random
interleaver).

In the simulations we usedS = 11 for N = 256 andS = 31 for
N = 4096.

The advantage of using three or more constituent codes is that the
corresponding two or more interleavers have a better chance to break se-
quences that were not taken care by another interleaver. The disadvantage
is that, for an overall desired code rate, each code must be punctured more,
resulting in weaker constituent codes. In our experiments, we have used
randomly selected interleavers and interleavers based on the row-column
permutation described above. In general, randomly selected permuta-

0 0 . . . 0 0 0
0 0
. 1 0 0 1 . . .
. 0 0 0 0 . . .
. 0 0 0 0 . . .
. 1 0 0 1 . . .
.
0 0
0 0 0 . . . 0 0

WRITE

R
E

A
D

Figure 3: Example where a block interleaver fails to “break” the
input sequence.

tions are good for low SNR operation (e.g., PCS applications requiring
Pb = 10−3) where the overall weight distribution of the code is more
important than the minimum distance

III. Turbo Decoding Configuration

The turbo decoding configuration proposed in [1] for two codes is shown
schematically in Fig. 4. This configuration operates in serial mode, i.e.
“Dec1” processes data before “Dec2” starts its operation, and so on.
An obvious extension of this configuration to three codes is shown in

DEC 1 DEC 2 DEC 1 • • •

Figure 4: Decoding structure for two codes.

Fig. 5(a), which also operates in serial mode. But, with more than two
codes, there are other possible configurations, as that shown in Fig. 5(b)
where “Dec1” communicates with the other decoders, but these decoders
do not exchange information among each other. This “Master & Slave”
configuration operates in a mixed serial-parallel mode, since all other
decoders except the first operate in parallel. Another possibility, shown in
Fig. 5(c) is that all decoders operate in parallel at any given time. Note that
self loops are not allowed in these structures since they cause degradation
or divergence in the decoding process (positive feedback). We are not
considering other possible hybrid configurations. Which configuration
performs better? Our selection of the best configuration and its associated
decoding rule is based on a detailed analysis of the minimum bit error
decoding rule (MAP algorithm) as described below.
Turbo Decoding for Multiple Codes — Let uk be a binary
random variable taking values in{0, 1}, representing the sequence of
information bitsu = (u1, . . . , uN). The MAP algorithm [7] provides the
log likelihood ratioLk given the received symbolsy:

Lk = log
P(uk = 1|y)

P(uk = 0|y)
(1)

DEC 1 DEC 2 DEC 3 DEC 1 • • •

DEC 2

DEC 1

DEC 3

TIME

(c) PARALLEL

(a) SERIAL

• • •

DEC 1

DEC 2

DEC 3

(b) MASTER & SLAVE

DEC 1

DEC 2

DEC 3

DEC 1

DEC 2

DEC 3

DEC 1

DEC 2

DEC 3

DEC 1

DEC 2

DEC 3

• • •

Figure 5: Different decoding structures for three codes.

= log

∑
u,uk=1 P(y|u)

∏
j 6=k P(u j)∑

u,uk=0 P(y|u)
∏

j 6=k P(u j)
+ log

P(uk = 1)

P(uk = 0)
(2)

For efficient computation of eq.(2) when the a-priori probabilitiesP(u j)

are non-uniform, the modified MAP algorithm in [2] is simpler to use
than the version considered in [1]. Therefore, in this paper we use the
modified MAP algorithm of [2] as we did in [4].

The channel model is shown in Fig. 6 where thenik ’s and thenpk’s
are i.i.d. zero mean Gaussian random variables with unit variance, and
ρ = √

2r Eb/No is the signal-to-noise ratio. (The same model is used
for each encoder). To explain the basic decoding concept we restrict

Encoder 1

ρ

ρ

n1p

y1i=ρ (2u-1) + n1i

y1p=ρ (2x1p-1) + n1p
u

n1i

x

Figure 6: Channel model.

ourselves to three codes, but extension to several codes is straightforward.
In order to simplify the notation, consider the combination of permuter
and encoder as a block code with inputu and outputsxi , i = 1, 2, 3 and
the corresponding received sequencesyi , i = 1, 2, 3. The optimum MAP
decision metric on each bit is (for data with uniform probabilities)

Lk = log

∑
u,uk=1 P(y1|u)P(y2|u)P(y3|u)∑
u,uk=0 P(y1|u)P(y2|u)P(y3|u)

, (3)

but in practice we cannot compute eq.(3) for largeN. Suppose that we
evaluateP(yi |u), i = 2, 3, in eq.(3) using Bayes’ rule and using the
following approximation

P(u|yi) ≈
N∏

k=1

P̃i (uk) (4)

Note thatP(u|yi) is not separable in general A reasonable criterion for
this approximation is to choose

∏N
k=1 P̃i (uk) such that it minimizes the

Kullback distance or free energy [9, 10]. Define

P̃i (uk) = euk L̃ik

1 + eL̃ik
, (5)

whereuk ∈ {0, 1}. Then the Kullback distance is given by

F(L̃ i) =
∑
u

e
∑N

k=1
uk L̃ik∏N

k=1(1 + eL̃ik)
log

e
∑N

k=1
uk L̃ik∏N

k=1(1 + eL̃ik)P(u|yi)
(6)

Such minimization involves forward and backward recursions analogous
to the MAP decoding algorithm! Therefore, if such an approximation
can be obtained, we can use it in eq.(3) fori = 2 andi = 3 (by Bayes’
rule) to complete the algorithm. Now, instead of using eq.(6) to obtain
{P̃i } or equivalently{L̃ i }, we use (4) and (5) fori = 2, 3 (by Bayes’ rule)
to express (3) as

Lk = f (y1, L̃2, L̃3, k) + L̃2k + L̃3k (7)

where

f (y1, L̃2, L̃3, k) = log

∑
u,uk=1 P(y1|u)

∏
j 6=k eu j (L̃2 j +L̃3 j)∑

u,uk=0 P(y1|u)
∏

j 6=k eu j (L̃2 j +L̃3 j)
(8)

We can use (4) and (5) again, but this time fori = 1, 3, to express (3) as

Lk = f (y2, L̃1, L̃3, k) + L̃1k + L̃3k (9)

and similarly
Lk = f (y3, L̃1, L̃2, k) + L̃1k + L̃2k (10)

A solution to eqs. 7,9, and 10 is

L̃1k = f (y1, L̃2, L̃3, k); L̃2k = f (y2, L̃1, L̃3, k); L̃3k = f (y3, L̃1, L̃2, k)

(11)
provided that a solution does indeed exist. fork = 1, 2, . . . , N. The final
decision is then based on

Lk = L̃1k + L̃2k + L̃3k (12)

which is passed through a hard-limiter with zero threshold. We attempted

MAP 2
π2 π2

-1

DELAY

+

-

+

L2k

L1
(m)~

L3
(m)~

L2
(m+1)~

y2

Figure 7: Structure of block decoder 2

to solve the nonlinear equations in (11) forL̃1, L̃2, andL̃3 by using the
iterative procedure

L̃ (m+1)

1k = α
(m)

1 f (y1, L̃
(m)

2 , L̃(m)

3 , k) (13)

for k = 1, 2, . . . , N, iterating onm. Similar recursions hold for̃L (m)

2k and
L̃ (m)

3k . The gainα(m)

1 should be equal to one, but we noticed experimentally
that better convergence can be obtained by optimizing this gain for each
iteration starting from a value slightly less than one, and increasing toward

one with the iterations, as often done in simulated annealing methods. We
start the recursion with the initial condition2 L̃(0)

1 = L̃(0)

2 = L̃(0)

3 = 0.
For the computation off (·) we use the modified MAP algorithm with
permuters (direct and inverse) where needed, as shown in Fig. 7 for block
decoder 2. The MAP algorithm always starts and ends at the all-zero
state since we used perfect termination. Similar structures apply for
block decoder 1 (π1 = I , identity), and block decoder 3. The overall
decoder is composed of block decoders connected as in Fig. 5(c), which
can be implemented as a pipeline or by feedback.
Multiple Code Algorithm Applied to Two Codes. — For
turbo codes with only two constituent codes, eq. (13) reduce to

L̃ (m+1)

1k = α
(m)

1 f (y1, L̃
(m)

2 , k) k = 1, 2, . . . , N

L̃ (m+1)

2k = α
(m)

2 f (y2, L̃
(m)

1 , k) m = 1, 2, . . .

where, for each iteration,α(m)

1 andα
(m)

2 can be optimized (simulated an-
nealing) or set to 1 for simplicity. The decoding configuration for two
codes, according to the previous section, is shown in Fig. 8. In this spe-

DEC 1 DEC 1 DEC 1

DEC 2 DEC 2 DEC 2

• • •

Figure 8: Parallel structure for two codes.

cial case, since the two paths in Fig. 8 are disjoint, the decoder structure
reduces to that of Fig. 4, i.e. to the serial mode.

If we optimizeα
(m)

1 andα
(m)

2 , our method for two codes is similar to
the decoding method proposed in [1], which requires estimates of the
variances ofL̃1k and L̃2k for each iteration in presence of errors. In the
method proposed in [2] the received “systematic” observation was sub-
tracted fromL̃1k, which results in performance degradation. In [3] the
method proposed in [2] was used but the received “systematic” observa-
tion was interleaved and provided to decoder 2. In [4], we argued that
there is no need to interleave the received “systematic” observation and
provide it to decoder 2, sincẽL1k does this job. It seems that our proposed
method withα(m)

1 andα
(m)

2 equal to 1 is the simplest and achieves the same
performance reported in [3] for rate 1/2 codes.
Terminated Parallel Convolutional Codes as Block
Codes. — Consider the combination of permuter and encoder as a
linear block code. DefinePi as the parity matrix of the terminated convo-
lutional codei . Then the overall generator matrix for three parallel codes
is

G = [I P1 π2P2 π3P3]

whereπi are the permutations (interleavers). In order to maximize the
minimum distance of the code given byG we should maximize the number
of linearly independent columns of the corresponding parity check matrix
H . This suggests that the design ofPi (code) andπi (permutation) are
closely related and it does not necessarily follow that optimum component
codes (maximumdmin) yield optimum parallel concatenated codes. For
very smallN we used this concept to design jointly the permuter and the
component convolutional codes.

IV. Performance

Two Codes — The performance obtained by turbo decoding the
code with two constituent codes(1, gb/ga), wherega = (37)octal and
gb = (21)octal, and with random permutations of lengthsN = 4096 and

2Note that the components of thẽL’s corresponding to the tail bits are set to
zero for all iterations.

N = 16384 is compared in Fig. 9 to the capacity of a binary-input Gaus-
sian channel for rater = 1/4. The best performance curve in Fig. 9 is
approximately 0.7 dB from the Shannon limit at BER=10−4.

1.00.50.0-0.5-1.0-1.5
10 -5

10 -4

10 -3

10 -2

10 -1

B
E

R

RATE = 1/4

Eb/No, dB

N
=4096, m

=10

N
=

16384, m
=

20 (T
W

O
 R

A
T

E
S

)

N
=

16384, m
=

20

N
=

4096, m
=

10 (T
W

O
 R

A
T

E
S

)

C
A

P
A

C
IT

Y
 (B

IN
A

R
Y

 IN
P

U
T

)

Figure 9: Turbo codes performance,r = 1/4

Unequal Rate Encoders — We now extend the results to encoders
with unequal rates with twoK = 5 constituent codes(1, gb/ga, gc/ga)

and (gb/ga), wherega = (37)octal, gb = (33)octal and gc = (25)octal.
This structure improves the performance of the overall, rate 1/4, code, as
shown in Fig.9. This improvement is due to the fact that we can avoid
using the interleaved information data at the second encoder and that the
rate of the first code is lower than that of the second code. For PCS ap-
plications, short interleavers should be used, since the vocoder frame is
usually 20ms. Therefore we selected 192 and 256 bits interleavers as an
example, corresponding to 9.6 and 13 Kbps. (Note that this small dif-
ference of interleaver size does not affect significantly the performance).
The performance of codes with short interleaver is shown in Fig. 10 for the
K = 5 codes described above for random permutation and row-column
permutation witha = 2 for rows anda = 4 for columns.
Three Codes — The performance of a three-code turbo code with
random interleavers is shown in Fig. 11 forN = 4096. The three recursive
codes shown in Fig. 1 where used forK = 3. Three recursive codes with
ga = (13)octal andgb = (11)octal were used forK = 4. Note that the
non-systematic version of this encoder is catastrophic, but the recursive
systematic version is non-catastrophic. We found that thisK = 4 code
has better performance than several others.

Although it was suggested [5] thatga be a primitive polynomial, we
found several counterexamples that show better performance, e.g.ga for
K = 5 proposed in [1] is not primitive.

In Fig. 11 , the performance of theK = 4 code was improved by
going to 30 iterations and using aS-random interleaver withS = 31. For
shorter blocks (192 and 256), the results are shown in Fig. 10 where it

can be observed that approximately 1 dB SNR is required for BER=10−3,
which implies a CDMA capacityC = 0.8η We have noticed that the
slope of the BER curve changes around BER=10−5 (flattening effect) if
the interleaver is not designed properly to maximizedmin or is chosen at
random.

Eb/No, dB

B
E

R

r=1/4
m=20

2.01.81.61.41.21.00.80.60.40.20.0
10 -5

10 -4

10 -3

10 -2

10 -1

Three K=3 Codes
Random Interleaver, N=192

K=15, r=1/4
Convolutional Code
(Reference)

Two K=5 Codes
Random Interleaver, N=192

Three K=4 Codes
11-Random
and (ar=2, ac=4)

Interleaver, N=256

Two K=5 Codes
(ar=2, ac=4)

Interleaver, N=256

Figure 10: Performance with short block sizes.

V. Conclusions

We have shown how turbo codes and decoders can be used to improve
the coding gain for PCS applications. These are just preliminary results
that require extensive further analysis. In particular, we need to improve
our understanding of the influence of the interleaver choice on the code
performance, to explore the sensitivity of the decoder performance to the
precision with which we can estimateEb/No.

An interesting theoretical question is to determine “how random” these
codes can be so as to draw conclusions on their performance based on
comparison with random coding bounds. In [4] we obtained the complete
weight distribution of a turbo code, calculated the upper bound on BER
and compared it with maximum-likelihood (ML) decoding. Those results
showed that the performance of turbo decoding is close to ML decoding
and to optimum MAP decoding. However, the approximation used in
eq.(4) implies that turbo decoding is only close to but not equal to MAP
decoding.

VI. Acknowledgments

The authors are grateful to S. Dolinar and R.J. McEliece for their helpful
comments.

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding: Turbo Codes.” Proc. 1993 IEEE International Conference
on Communications, pp. 1064–1070.

0.50.40.30.20.10.0-0.1-0.2
10 -5

10 -4

10 -3

10 -2

10 -1

Eb/No, dB
B

E
R

N=4096
Code Rate=1/4

K=15, r=1/4
Galileo Code

Three K=3 Codes
m=20

Three K=4 Codes
m=20

Three K=4 Codes
m=30

Figure 11: Three-code performance

[2] J. Hagenauer and P. Robertson, “Iterative (Turbo) decoding of systematic
convolutional codes with the MAP and SOVA algorithms”, Proc. of the ITG
conference “Source and channel coding”, Oct. 1994, Frankfurt.

[3] P. Robertson, “Illuminating the structure of code and decoder of parallel con-
catenated recursive systematic (Turbo) codes”, Proceedings GLOBECOM
’94, Dec. 1994, pp.1298-1303.

[4] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Communications”,
JPL TDA Progress Report 42-120, Feb. 15, 1995.

[5] G. Battail, C. Berrou and A. Glavieux, “Pseudo-random recursive con-
volutional coding for near-capacity performance”, Comm. Theory Mini-
conference, GLOBECOM ’93, Dec. 1993.

[6] D. Divsalar, S. Dolinar and F. Pollara, “Weight distribution of multiple turbo
codes”, JPL TDA Progress Report, (In preparation).

[7] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Lin-
ear Codes for Minimizing Symbol Error Rate,”IEEE Trans. Inform. Theory,
vol. IT-20 (1974), pp. 284–287.

[8] E. Dunscombe and F.C. Piper, “ Optimal interleaving scheme for convolutional
codes”, Electronic Letters, 26 Oct. 1989, Vol. 25, No. 22, pp. 1517-1518.

[9] M. Moher, “Decoding via Cross-entropy Minimization”, Proceedings
GLOBECOM ’93, Dec. 1993, p.809-813.

[10] G. Battail and R. Sfez, “Suboptimum Decoding using the Kullback Princi-
ple”, Lecture Notes in Computer Science, Vol. 313, pp. 93-101, 1988.

