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ABSTRACT: Turbo codes are the most exciting and potentially importantcorrespond to 9.6 Kbps and 13 Kbps with roughly 20ms frames). Higher

development in coding theory in many years. They were introduced iapacity can be obtained with larger interleavers. Note that low rate codes
1993 by Berrou, Glavieux and Thitimajshima [1], and claimed to achievecan be used for CDMA since an integer number of chips per coded symbol
near Shannon-limit error correction performance with relatively simpleis used and bandwidth is defined mainly by chip rate.

component codes and large interleavers. A requigd, of 0.7 dB was Three new contributions are reported in this paper: a new simple

reported for BER of 10° and code rate of 1/2 [1]. However, some im- method for trellis termination, the use of unequal rate component codes
portant details that are necessary to reproduce these results were omittadhich results in better performance, and the development of decoders for
This paper confirms the accuracy of these claims, and presents a completeiltiple-code encoders — the original turbo decoder scheme operates in
description of an encoder/decoder pair that could be suitable for PCS aperial mode, while for multiple-code encoders we found that the decoder
plications. We describe a new simple method for trellis termination, wefor the whole turbo code based on the optimum MAP rule must operate

analyze the effect of interleaver choice on the weight distribution of then parallel mode, and we derived the appropriate metric as illustrated in

code, and we introduce the use of unequal rate component codes whi&ec. Il.

yields better performance. Turbo codes are extended to encoders with

: . . > . 1I. PARALLEL CONCATENATION OF CONVOLUTIONAL
multiple codes and a suitable decoder structure is developed, which is

substantially different from the decoder for two-code based encoders. CopEs
The codes considered in this paper consist of the parallel concatenation
I. INTRODUCTION of multiple convolutional codes with random interleavers (permutations)

Coding theorists have traditionally attacked the problem of designingt the input of each encoder. Fig. 1 illustrates a particular example that
good codes by developing codes with a lot of structure which lends tVill be used in this paper to verify the performance of these codes. The
feasible decoders, although coding theory suggests that codes chosen “at .

random” should perform well if their block size is large enough. The - xq

challenge to find practical decoders for “almost” random, large codes has
not been seriously considered until recently. Perhaps the most exciting Y
and potentially important development in coding theory in recent years =es{ O 3
has been the dramatic announcement of “Turbo-codes” by Berrou et al. r"\
in 1993 [1]. The announced performance of these codes was so good that Encoder1 = X1
the initial reaction of the coding establishment was deep skepticism, but Y
recently researchers around the world have been able to reproduce those y
results [3]- [4]. The introduction of turbo-codes has opened a whole new Y
way of looking at the problem of constructing good codes and decoding 'u ~H =EI-LE|—<
them with low complexity. 2 S

These codes are claimed to achieve near Shannon-limit error correc- Encoderz ~ e
tion performance with relatively simple component codes and large inter- y
leavers. A requiredE,/ Ny of 0.7 dB was reported for BER of 18 [1]. T
However, some important details that are necessary to reproduce these Y D‘LE'—‘

. ) . A | »(Dexl| D

results were omitted. The purpose of this paper is to shed some light on us EANVA (o 1
the accuracy of these claims, and to present a complete description of an ‘,"\ _
encoder/decoder pair that could be suitable for personal communications Encoder3 =

systems (PCS) applications, where lower rate codes can be used.
For example, in multiple-access schemes like CDMA the capacity
(maximum number of users per cell) can be expresséblasﬁ +1,
wheren, is the processing gain arigl,/ N, is the required signal-to-noise
ratio to achieve a desired bit error rate (BER) performance. For a give

Figure 1: Example of encoder with three codes

encoder contains three recursive binary convolutional encodersMyijth
IR/Iz and M3 memory cells respectively. In general, the three component

BER, a smaller require b/N‘.’ : plies a larger capacity or cell size. encoders may not be identical. The first component encoder operates
Unfortunately, to reducg, /N, it is necessary to use very complex codes . . A .
directly on the information bit sequenee= (uy, ..., uy) of lengthN,

(e.g. large constraint length convolutional codes). Inthis paper, we desiggn

turbo codes suitable for CDMA and PCS applications that can achiev roducing the two output sequencgs andxi. The secqnd cpmponent
: T i . encoder operates on areordered sequence of informatianpipteduced
superior performance with limited complexity. For example, if a (7,1/2) : .
by aninterleaver, of lengthN, and outputs the sequeneg,. Similarly,

convolutional code is used at BER=10 the capacity isC = 0.5. subsequent component encoders operate on a reordered sequence of in-
However, if two (5,1/3) punctured convolutional codes or three (4,1/3), q P P q

. - ~“formation bitsu; produced by interleaver; and output the sequengg,.
punctured codes are used in & turbo encoder structure, the capacity C?He interleaver is a pseudo-random block scrambler defined by a permu-
be increased t€ = 0.8y (with 192-bits and 256-bits interleavers which P yap

tation of N elements with no repetitions: a complete block is read into
1The research described in this paper was carried out at the Jet Propulsiéhe the interleaver and read out in a specified (fixed) random order. The

Laboratory, California Institute of Technology, under contract with the NationalSame interleaver is used repeatedly for all subsequent blocks. Figure 1
Aeronautics and Space Administration. shows an example where arate- 1/n = 1/4 code is generated by three




component codes withl; = M, = M3 = M = 2, producing the outputs  14+2 Zi3=1 ti. Thus, one ofthe considerations in designing the interleaver
X1i = U, X1p = U-0/0a, X2p = Uz-Op/0a, AN0X3, = U3- Op/a, Where is to avoid integer tripletsty, t,, t3) that are simultaneously small in all
the generator polynomiatg andg, have octal representati@i) .o @and  three components. In fact, it would be nice to design an interleaver to
(5)octal, respectively. Note that various code rates can be obtained bguarantee that the smallest vaIueEf:l t; (forintegert;) grows with the
proper puncturing okip, x2, andxs,. The design of the constituent block sizeN.

convolutional codes, which are not necessarily optimum convolutional g comparison we consider the same encoder structure in Fig. 1, ex-
codes, is still under investigation. It was suggested in [5] that good codegept with the roles of, andg, reversed. Now the minimum distances
are obtained iy, is a primitive polynomial. o of the three component codes are 5, 3, and 3, producing an overall min-
Trellis Termination — We use the encoder in Fig. 1 to generate aimum distance of 11 for the total code without any permutations. This
(n(N + M), N) block code, where th#! tail bits of code 2 and code 3 s apparently a better code, but it turns out to be inferior as a turbo code.
are not transmitted. Since the component encoders are recursive, it is NPthis paradox is explained by again considering the critical weight-2 data
sufficient to set the lad¥l information bits to zero in order to drive the sequences. For this code, We|ght_2 sequences Wit2tl, zeros sepa-
encoder to the all zero state, i.e. to terminate the trellis. The terminatiopating the two 1's produce self-terminating output and hence low-weight
(tail) sequence depends on the state of each component encodé aftelencoded words. In the turbo encoder, such sequences will be permuted
bitS, which makes it impossible to terminate both Component encoder@ have separations_ﬂ._ Zti’ i = 2,3, for the second and third encoders,
with justM bits. This issue has not been resolved in previously propose@/here now eachy is defined as a multiple of/2. But now the total
turbo code implementations. Fortunately, the simple stratagem illustrateghcoded weight for integer triplets, t, ts) is 11+ Zf_l t;. Notice how

in Fig.'z is sufficient tp terminate the trellis at the er_ld of the bloc_:l_<. (Thethis weight grows only half as fast WitEis—l t as the previously calcu-
specific code shown is not important). Here the switch is in position “A” . - 3 .
lated weight for the original code. ¥, t; can be made to grow with

for the firstN clock cycles and is in position “B” foM additional cycles, . . . S
which will flush the encoders with zeros. The decoder does not assunP ock size by proper choice of interleaver, then clearly It Is Important to
knowledge of theM tail bits. The same termination method will be used choose compone_nt c_o_des that cause the Qverall \.Ne'ghF to grow as fast as
for all encoders possible with the individual separatiofais This consideration outweighs

' the criterion of selecting component codes that would produce the highest
minimum distance if unpermuted.

l There are also many weight-n = 3,4, 5, ..., data sequences that
Input Data  ®°% f" 5 s 5 = |“ produce self-terminating output and hence low encoded weight. However,
- T \ as argued below, these sequences are much more likely to be broken up
by the random interleavers than the weight-2 sequences and are therefore
likely to produce non-terminating output from at least one of the encoders.
Thus, turbo code structures, which would have low minimum distances
if unpermuted, can still perform well if the low-weight codewords of the
Figure 2: Trellis Termination component codes are produced by input sequences with weight higher
than two.

Weight Distribution — In order to estimate the performance of =~ Weight Distribution with Random Interleavers — Now
a code it is necessary to have information about its minimum distanceve briefly examine the issue of whether one or more random interleavers
weight distribution, or actual code geometry, depending on the accuracian avoid matching small separations between the 1's of a weight-2 data
required for the bounds or approximations. The challenge is in findingequence with equally small separations between the 1's of its permuted
the pairing of codewords from each individual encoder, induced by aersion(s). Consider for example a particular weight-2 data sequence
particular set of interleavers. Intuitively, we would like to avoid joining (. ..001001000..) which corresponds to a low weight codeword in each
low-weight codewords from one encoder with low-weight words from of the encoders of Fig. 1. If we randomly select an interleaver of size
the other encoders. In the example of Fig. 1, the component codes haé the probability that this sequence will be permuted into another se-
minimum distances 5,2 and 2. This will produce a worst-case minimungluence of the same form is roughly2 (assuming thai is large,
distance of 9 for the overall code. Note that this would be unavoidand ignoring minor edge effects). The probability that such an unfor-
able if the encoders were not recursive since, in this case, the minimuiiinate pairing happens for at least one possible position of the original
weight word for all three encoders is generated by the input sequend&equence(...001001000. .) within the block size ofN, is approxi-
u = (00...000010Q .. 000) with a single “1”, which will appear again mately 1— (1 — 2/N)N ~ 1 — e 2. This implies that the minimum
in the other encoders, for any choice of interleavers. This motivates thdistance of a two-code turbo code constructed with a random permuta-
use of recursive encoders, where the key ingredient is the recursivendégn is not likely to be much higher than the encoded weight of such
and not the fact that the encoders are systematic. For our example, tA8 unpermuted weight-2 data sequence, e.g. 14 for the code in Fig. 1.
input sequencer = (00...00100100..000 generates a low weight (For the worst case permutations, theg, of the code is still 9, but these
codeword with weight 6, for the first encoder. If the interleavers do notermutations are highly unlikely if chosen randomly). By contrast, if
“break” this input pattern, the resulting codewords weight will be 14. Inwe use three codes and two different interleavers, the probability that
general weight-2 sequences withi-23t zeros separating the 1's would @ particular sequence ..001001000..) will be reproduced by both
result in a total weight of 14- 6t if there were no permutations. interleavers is only2/N). Now the probability of finding such an un-
With permutations before the second and third encoders, a weighfortunate data sequence somewhere within the block ofigizeroughly
2 sequence with its 1's separated by-23t; zeros will be permuted 1 — [1— (2/N)2]N ~ 4/N. Thus it is probable that a three-code turbo
into two other weight-2 sequences with 1's separated By3% zeros, code using two random interleavers will see an increase in its minimum
i = 2,3, where eacly is defined as a multiple of/B. If anyt; is not distance beyond the encoded weight of an unpermuted weight-2 data
an integer, the corresponding encoded output will have a high weighdequence. This argument can be extended to account for other weight-
because then the convolutional code output is non-terminating (until th2 data sequences which may also produce low weight codewords, e.g.
end of the block). If alt;'s are integers, the total encoded weight will be (...0010q000'1000...), for the code in Fig. 1. For comparison, let
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us consider a weight-3 data sequence such a$01110Q..) which permutations (interleavers) by generating random integdrs< i < N,

for our example corresponds to the minimum distance of the code (usingithout replacement. We define a “S-random” permutation as follows:
no permutations). The probability that this sequence is reproduced witeach randomly selected integer is compare8poeviously selected inte-
one random interleaver is roughly 82, and the probability that some gers. If the current selection is equal to @previous selections within
sequence of the for. . 001110Q.. .) is paired with another of the same a distance oft S, then the current selection is rejected. This process is
formis 1— (1 — 6/N?)N ~ 6/N. Thus for large block sizes, the bad repeated until alN integers are selected. While the searching time in-
weight-3 data sequences have a small probability of being matched wittreases witls, we observed that choosir®< /N/2 usually produces
bad weight-3 permuted data sequences, even in a two-code system. a solution in reasonable time. (F& = 1 we have a purely random

For a turbo code using codes andj — 1 random interleavers this interleaver).
probability is even smaller, [1— (6/N2)q—1]N ~ 8(8)9-2 This In the simulations we use8 = 11 for N = 256 andS = 31 for
: o (5 .

implies that the minimum distance codeword of the turbo code in Fig. N = 4096. . ) )

is more likely to result from a weight-2 data sequence of the form The advantage of using three or more constituent codes is that the
(...001001000. .) than from the weight-3 sequence . 0011100 . .) corresponding two or more interleavers have a better chance to break se-
that produces the minimum distance in the unpermuted version of thBUeNces that were not taken care by another interleaver. The disadvantage

same code. Higher weight sequences have even smaller probability gfthat, for an overall desired code rate, each code must be punctured more,

reproducing themselves after being passed through a random interleaviSulting in weaker constituent codes. In our experiments, we have used
For a turbo code using codes andj — 1 interleavers, the probability randomly selected interleavers and interleavers based on the row-column

that a weighta data sequence will be reproduced somewhere within thepermutatlon described above. In general, randomly selected permuta-

block by allq — 1 permutations is of the form 4 [1 — (ﬁ/N"*l)qfl]N, bo...000
whereg is a number that depends on the weightata sequence but does WRITE 1001. ..
not increase with block sizBl. For largeN, this probability is propor- - 8 8 8 8 *E
tional to (1/N)"4-"~9, which falls off rapidly withN, whenn andq are THONORT o

greater than two. Furthermore, the symmetry of this expression indicates 0. . .. .. 0
that increasing either the weight of the data sequenmethe number of

codeq has roughly the same effect on lowering this probability. Ei 3 E le wh block i | tails to “break” th
Insummary,fromtheaboveargumentswe(:oncludethatweight-zdataIgure - Example where a block interleaver fails to “brea €

sequences are an important factor in the design of the component codé@PUt sequence.

and that higher weight have decreasing importance. Also, increasing the

number of codes may result in better turbo codes. More accurate resuﬁlpgnS are good for low SNR opergtlon (g.g_., P.CS applications requiring
and derivations are discussed in [6]. » = 107°) where the overall weight distribution of the code is more

- . . . . important than the minimum distance
The minimum distance is not the most important quantity of the turbo

i i g N IIT. TuURBO DECODING CONFIGURATION
code, exceptforits a_symp_totl_c pe_rformance,_atvery BigNo. A.t mod . The turbo decoding configuration proposed in [1] for two codes is shown
erate SNRs, the weight distribution for the first several possible weights ; R - ) ; . . .
hematically in Fig. 4. This configuration operates in serial mode, i.e.

. . . C
is necessary to compute the code performance. Estimating the comple%ec 1" processes data before “Dec2" starts its operation. and so on

weight distribution of these codes for larjeand fixed interleavers is still . . : ) - . .
S - . - ... An obvious extension of this configuration to three codes is shown in
an open problem. However, it is possible to estimate the weight distribu-

tion for largeN for random interleavers by using probabilistic arguments.

(See [4] for further considerations on the weight distribution). @ @ @ e o o

Interleaver Design — Interleavers should be capable of spread-

ing low-weight input sequences so that the resulting codeword has high ) )

weight. Block interleavers, defined by a matrix with rows andu Figure 4: Decoding structure for two codes.

columns such thal = v, x v, may fail to spread certain sequences. For ) ) i )

example, the weight 4 sequence shown in Fig. 3 cannot be broken byF9: 5(a), which also operates in serial mode. But, with more than two
block interleaver. In order to break such sequences random interleavef@des, there are other possible configurations, as that shown in Fig. 5(b)
are desirable. (A method for the design of interleavers is discussed in [3]yvhere “Decl” communicates with the other decoders, but these decoders
Block interleavers are effective if the low-weight sequence is confined t&l0 Not exchange information among each other. This “Master & Slave”
a row. If low-weight sequences (which can be regarded as the combingonfiguration operates in a mixed serial-parallel mode, since all other
tion of lower weight sequences) are confined to several consecutive rO\,\g(’ecoders exceptthe first operate in parallel. Another possibility, shown in
then thev, columns of the interleaver should be sent in a specified ordef9- 5(c) is that all decoders operate in parallel at any given time. Note that
to spread as much as possible the low-weight sequence. A method f8glf loops are not allowed in these structures since they cause degradation
reordering the columns is given in [8]. This method guarantees that fof" divergence in the decoding process (positive feedback). We are not
any number of columns, = aq +r, (r < a — 1), the minimum sepa- considering other possible hybrid configurations. Which configuration
ration between data entriesgs— 1, wherea is the number of columns performs better? Our selection of the best configuration and its associated
affected by a burst. However, as can be observed in the example in Fig. decoding rule is based on a detailed analysis of the minimum bit error
the sequence 1001 will still appear at the input of the encoders for angecoding rule (MAP algorithm) as described below.

possible column permutation. Only if we permute the rows of the inter-Lurbo Decoding for Multiple Codes — Let ux be a binary
leaver in addition to its columns it is possible to break the low-weight/andom variable taking values i, 1}, representing the sequence of

sequences. The method in [8] can be used again for the permutation formation bitsu = (uy, ..., uy). The MAP algorithm [7] provides the
rows. Appropriate selection of @&, andq for rows and columns de- 109 likelihood ratioL given the received symbojs
pends on the particular set of codes used and on the specific low-weight Pk = 1ly)

sequences that we would like to break. We have also designed random % = P(uc = Oly) @



)

YA\ Note thatP(uly;) is not separable in general A reasonable criterion for
DEC 1 DEC 2 DEC 3 DEC 1 ~
O — @ ¢ this approximation is to choos]é[l'j:1 P, (uy) such that it minimizes the

Kullback distance or free energy [9, 10]. Define

& &) . oo
@ whereuy € {0, 1}. Then the Kullback distance is given by
(b) MASTER & SLAVE
ez:lzluk[ik ez:ﬂukﬂ\k

F(L) = — log _
Xu: HE=1(1+EL”) HE=1(1+eLik)P(UIYi)

(

(a) SERIAL

(6)

Such minimization involves forward and backward recursions analogous
o o to the MAP decoding algorithm! Therefore, if such an approximation

can be obtained, we can use it in eq.(3)ifee 2 andi = 3 (by Bayes’

rule) to complete the algorithm. Now, instead of using eq.(6) to obtain

{B} or equivalently{L; }, we use (4) and (5) fdr= 2, 3 (by Bayes' rule)

to express (3) as

(c) PARALLEL

{ | | } - Lk = f(y1, Lo, Lg, K) + Lok + Lak (7)
TIME
where
Figure 5: Different decoding structures for three codes. o > s POalw [T, ettt
f(y1 L, L3, k) = log — (8)
ZU,uk=0 P(yi|u) H#k euj(L2j+Lsj)
P(ylu) ||, P(u; =
= | Louuzs PO P log D=1 (2)  We can use (4) and (5) again, but this timeifet 1, 3, to express (3) as
Zuﬁukzo P(ylu) ]_[,-#k P(uj) P(uc =0 o ) )}
. , o o Lk = f(y2, L1, L3, K) + Lax + Lk )
For efficient computation of eq.(2) when the a-priori probabilitis;)
are non-uniform, the modified MAP algorithm in [2] is simpler to use and similarly o _ 3
than the version considered in [1]. Therefore, in this paper we use the Lk = f(ys, L1, Lo, K) + Lax + Lo (10)
modified MAP algorithm of [2] as we did in [4]. A solution to egs. 7,9, and 10 is

The channel model is shown in Fig. 6 where tiygs and thenp’s : o 3 o y o
are i.i.d. zero mean Gaussian random variables with unit variance, andy = f (y1, Lo, Lz, K); Lo = f(y2, L1, L3, K); Lax = f(y3, L1, L2, k)

o = J/2rEp/N, is the signal-to-noise ratio. (The same model is used (12)
for each encoder). To explain the basic decoding concept we restrigirovided that a solution does indeed exist.Ket 1, 2, ..., N. The final
decision is then based on
N1 ~ - ~
Lk = Lok + Lo + La (12)
N o - ) . . . .
1 Y1i=P (2u-1) + ny which is passed through a hard-limiter with zero threshold. We attempted
= Encoder 1 X b @ Y1p=P (2x1p-1) + nyp

nlp ~
L l(m)

Figure 6: Channel model.

ourselves to three codes, but extension to several codes is straightforward. )
In order to simplify the notation, consider the combination of permuter

and encoder as a block code with inpuand outputs;, i = 1, 2, 3 and T
the corresponding received sequenges = 1, 2, 3. The optimum MAP v2
decision metric on each bit is (for data with uniform probabilities)

Figure 7: Structure of block decoder 2
> s POwP(y2lw P(ysiw

Lk = log , (3) - ions i br T [ -
Su o P(y1/uw)P(y2lu)P(yslu) _to sol_ve the nonlinear equations in (11) for, L,, andL; by using the
: iterative procedure
but in practice we cannot compute eq.(3) for laije Suppose that we FMHD _(m) = (m) £ m
evaluateP(y;|u), i = 2,3, in eq.(3) using Bayes’ rule and using the Ly =ay f(y, Ly, Ly, k) (13)
following approximation fork=1,2,..., N, iterating orm. Similar recursions hold fot 3" and

LY. The gain\™ should be equal to one, but we noticed experimentally

N
P(ulyi) ~ l—[ B, (u) ) _that petter convergence can b(_a obtained by optimizing_this ga?n for each
1 iteration starting from a value slightly less than one, and increasing toward



one with the iterations, as often done in simulated annealing methods. We = 16384 is compared in Fig. 9 to the capacity of a binary-input Gaus-

start the recursion with the initial conditi®i.y” = LY = LY = 0.  sian channel for rate = 1/4. The best performance curve in Fig. 9 is

For the computation of () we use the modified MAP algorithm with approximately 0.7 dB from the Shannon limit at BER=10
permuters (direct and inverse) where needed, as shown in Fig. 7 for block

decoder 2. The MAP algorithm always starts and ends at the all-zero 10" '
state since we used perfect termination. Similar structures apply for
block decoder 17, = I, identity), and block decoder 3. The overall RATE = 1/4
decoder is composed of block decoders connected as in Fig. 5(c), which
can be implemented as a pipeline or by feedback.

Multiple Code Algorithm Applied to Two Codes. — For

turbo codes with only two constituent codes, eq. (13) reduce to

LA L

107
LY = o™ f(y, L™, k) k=1,2,...,N

Fml)
L2k -

BER

aém) f(ya2, I:(lm), kk m=12...

where, for each iteratiormi"‘) andoeé"‘) can be optimized (simulated an-
nealing) or set to 1 for simplicity. The decoding configuration for two 105
codes, according to the previous section, is shown in Fig. 8. In this spe-

Figure 8: Parallel structure for two codes.
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cial case, since the two paths in Fig. 8 are disjoint, the decoder structure
reduces to that of Fig. 4, i.e. to the serial mode.

. L 10 T T T
If we optimizea!™ anda{™, our method for two codes is similar to )

15 -1.0 -0.5 0.0 05 1.0

the decoding method proposed in [1], which requires estimates of the Ep/No, dB
variances ofLy and Ly for each iteration in presence of errors. In the
method proposed in [2] the received “systematic” observation was sub- Figure 9: Turbo codes performance= 1/4
tracted fromL, which results in performance degradation. In [3] the
method proposed in [2] was uged but the received “systematic” observzﬁnequa1 Rate Encoders — We now extend the results to encoders
tion was interleaved and provided to decoder 2. In [4], we argued th ith unequal rates with twé = 5 constituent codegl, go/Ja, Ge/Ga)
there is no need to interleave the received “systematic” observation al d(9b/9n), Wherega = (37octans I = (3octa and{; o (’25) ol

. . . il .. )a/ s a — octals - octal c — octal+
provide it to d(emc)oder Z(h)s'ndelk does this job. Itseems that our proposed rpjq girycryre improves the performance of the overall, rate 1/4, code, as
method withw, ™ anda, . equal to Listhe simplestand achieves the sam hown in Fig.9. This improvement is due to the fact that we can avoid
perforr.nanczrep;?rtedllln1[3]éor ratel u 2 codles.c d Block using the interleaved information data at the second encoder and that the
germlnate c a_‘ga eh Ongfo u,tlon? odes ‘ZS (zjc rate of the first code is lower than that of the second code. For PCS ap-
; odes. — Consi er_t e com |nat_|0n 0 permuter an. encoder as lications, short interleavers should be used, since the vocoder frame is
linear block code. Defing; as the parity matrix of the terminated convo- usually 20ms. Therefore we selected 192 and 256 bits interleavers as an
lutional code . Then the overall generator matrix for three parallel codesexample corresponding to 9.6 and 13 Kbps. (Note that this small dif-
IS ference of interleaver size does not affect significantly the performance).

G =[l Py mP; m3P]

The performance of codes with short interleaver is shown in Fig. 10 for the
wherexr; are the permutations (interleavers). In order to maximize theK = 5 codes described above for random permutation and row-column

minimum distance of the code given 8we should maximize the number permutation witha = 2 for rows anca = 4 for columns.

of linearly independent columns of the corresponding parity check matriXChree Codes — The performance of a three-code turbo code with
H. This suggests that the designf(code) andr; (permutation) are  random interleavers is shown in Fig. 11 for= 4096. Thethree recursive
closely related and it does not necessarily follow that optimum componerdodes shown in Fig. 1 where used #r= 3. Three recursive codes with
codes (maximuntlyi,) yield optimum parallel concatenated codes. For g, = (13)octar @nd gy = (11)octal Were used folK = 4. Note that the

very smallN we used this concept to design jointly the permuter and thenon-systematic version of this encoder is catastrophic, but the recursive
component convolutional codes.

systematic version is non-catastrophic. We found thatkhis: 4 code
has better performance than several others.

Two Codes — The performance obtained by turbo decoding thef AI(;hough Ilt was fuggestenlj [SEhthtg;hbe abp;;mltlvefpolynomlag we
code with two constituent code4, gn/da), wherega, = (37)octar @and Ig u_n Ssevera ngn (ire_xamf e.s 't? Show betler performance.a.
O = (2D)octar, and with random permutations of lengts= 4096 and = 5 proposed in [1] is not primitive.

In Fig. 11 , the performance of thé = 4 code was improved by
2Note that the components of tgs corresponding to the tail bits are set to g0ing to 30 iterations and usingSrandom interleaver witls = 31. For
zero for all iterations.

shorter blocks (192 and 256), the results are shown in Fig. 10 where it

IV. PERFORMANCE




can be observed that approximately 1 dB SNR is required for BER510 10
which implies a CDMA capacityC = 0.8y We have noticed that the N=4096
slope of the BER curve changes around BER=1@attening effect) if Code Rate=1/4
the interleaver is not designed properly to maxindzg, or is chosen at
random.

K=15, r=1/4
Galileo Code

101
r=1/4 10 L
m=20
@ Three K=3 Codes
1] m=20
m
Three K=3 Codes
Random Interleaver, N=192
105 1074 1
% Two K=5 Codes
m Random Interleaver, N=192
K=15, r=1/4
Convolutional Code Three K=4 Codes
(Reference) 104 m=30 o
10 -3
Three K=4 Codes
m=20
Three K=4 Codes 1075 T T T T T T
11-Random 0.2 0.1 0.0 0.1 0.2 03 0.4 05
and (a;=2, ac=4)
10 Interleaver, N=256 Ep/Ng, dB
Two K=5 Codes Figure 11: Three-code performance
(=2, ag=4)
Interleaver, N=256
[2] J. Hagenauer and P. Robertson, “Iterative (Turbo) decoding of systematic
convolutional codes with the MAP and SOVA algorithms”, Proc. of the ITG
105 T T T T T T T T conference “Source and channel coding”, Oct. 1994, Frankfurt.

T
00 02 04 06 08 10 12 14 16 18 20 [3] P. Robertson, “llluminating the structure of code and decoder of parallel con-

Ep/Ng, dB catenated recursive systematic (Turbo) codes”, Proceedings GLOBECOM
'94, Dec. 1994, pp.1298-1303.
Figure 10: Performance with short block sizes. [4] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Communications”,
9 JPL TDA Progress Report 42-120, Feb. 15, 1995.
V. CONCLUSIONS [5] G. Battail, C. Berrou and A. Glavieux, “Pseudo-random recursive con-

We have shown how turbo codes and decoders can be used to improve volutional coding for near-capacity performance’, Comm. Theory Mini-

the coding gain for PCS applications. These are just preliminary results ~conference, GLOBECOM '93, Dec. 1993.

that require extensive further analysis. In particular, we need to improvgs] D. Divsalar, S. Dolinar and F. Pollara, “Weight distribution of multiple turbo

our understanding of the influence of the interleaver choice on the code codes”, JPL TDA Progress Report, (In preparation).

performance, to explore the sensitivity of the decoder performance to thg] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Lin-

precision with which we can estimakg/N,. ear Codes for Minimizing Symbol Error RatéEEE Trans. Inform. Theory
Aninteresting theoretical question is to determine “how random” these ~ Vol. IT-20 (1974), pp. 284-287.

codes can be so as to draw conclusions on their performance based [8h E. Dunscombe and F.C. Piper, “ Optimal interleaving scheme for convolutional

comparison with random coding bounds. In [4] we obtained the complete codes”, Electronic Letters, 26 Oct. 1989, Vol. 25, No. 22, pp. 1517-1518.

weight distribution of a turbo code, calculated the upper bound on BER9] M. Moher, “Decoding via Cross-entropy Minimization”, Proceedings

and compared it with maximume-likelihood (ML) decoding. Those results ~ GLOBECOM '93, Dec. 1993, p.809-813.

showed that the performance of turbo decoding is close to ML decodingjo] G. Battail and R. Sfez, “Suboptimum Decoding using the Kullback Princi-

and to optimum MAP decoding. However, the approximation used in  ple”, Lecture Notes in Computer Science, Vol. 313, pp. 93-101, 1988.

eg.(4) implies that turbo decoding is only close to but not equal to MAP

decoding.
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